Critères de divisibilité 1

Pour savoir si un nombre entier est divisible par $val9


Critères de divisibilité 2

Vrai ou faux ?

$(val9[$m_i]) :


Critères de divisibilité 3


Le nombre $val6 est divisible par 2 :

Le nombre $val7 est divisible par 5 :

Le nombre $val8 est divisible par 10 :

Critères de divisibilité 4


Relier un nombre avec un diviseur possible de la liste :



Critères de divisibilité 5

Le nombre est divisible par
par 2 par 5par 10
Le nombre $val8     

Critères de divisibilité 1 s

Pour savoir si un nombre entier est divisible par $val9


Critères de divisibilité 2 s

Vrai ou faux ?

$(val9[$m_i]) :


Critères de divisibilité 3 s


Le nombre $val6 est divisible par 3 :

Le nombre $val7 est divisible par 4 :

Le nombre $val8 est divisible par 9 :

Critères de divisibilité 4 s


Relier un nombre avec un diviseur possible de la liste :



Critères de divisibilité 5 s

Le nombre est divisible par
par 3 par 4par 9
Le nombre $val8     

divisions par 10, 100, 1000 ex1


Donnez le résultat de la division :

$val9 $val10 =

divisions par 10, 100, 1000 ex2


Donnez le résultat de la division :

$val8 $val10 =

divisions par 10, 100, 1000 ex3


Donnez le résultat de la division :

$val11 $val12 =

divisions par 10, 100, 1000 ex4


Donnez le résultat de la division :

$val11 $val13 =

divisions par 10, 100, 1000 ex5


Donnez le résultat de la division :

$val8 $val10 =

division posée 1



Faire la division posée suivante :
( Vous devez remplir toutes les étiquettes avec des chiffres )
$(val14[4-$m_a]) $val7
$val13
$val13

division posée 2



Faire la division posée suivante :
( Vous devez remplir toutes les étiquettes avec des chiffres )
$(val14[4-$m_a]) $val7
$val13
$val13

division posée 3



Faire la division posée suivante :
( Vous devez remplir toutes les étiquettes avec des chiffres )
$(val16[4-$m_a]) $val7 $val8
$val15
$val15

division posée 4


Faire la division posée suivante :
( Vous devez remplir toutes les étiquettes avec des chiffres )
$(val17[5-$m_a]) $val7 $val8
$val16
$val16
$val16

division posée 5


Faire la division posée suivante :
( Vous devez remplir toutes les étiquettes avec des chiffres )
$(val17[5-$m_a]) $val12 $val13
$val16
$val16
$val16

Utilisation calculatrice division 1

Trouver $val10 avec la calculatrice :

$val11

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice division 2

Trouver $val10 avec la calculatrice :

$val11

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice division 3

Trouver $val11 avec la calculatrice :

$val12

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice division 4

Trouver $val11 avec la calculatrice :

$val12

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice division 5

Trouver $val11 avec la calculatrice :

$val12

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice problèmes 1


$val19
$val20

Trouver la solution du problème en utilisant la calculatrice : $val25

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice problèmes 2


$val19
$val20

Trouver la solution du problème en utilisant la calculatrice : $val25

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice problèmes 3


$val19
$val20

Trouver la solution du problème en utilisant la calculatrice : $val25

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice problèmes 4


$val19
$val20

Trouver la solution du problème en utilisant la calculatrice : $val27

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Utilisation calculatrice problèmes 5


$val19
$val20

Trouver la solution du problème en utilisant la calculatrice : $val29

( Attention : il faut respecter l'espace tous les trois chiffres
et utiliser la virgule comme séparateur décimal )

Calcul mental division 1


Donnez le résultat de la division :

$val8 $val6 =

Calcul mental division 2


Donnez le résultat de la division :

$val8 $val6 =

Calcul mental division 3


Donnez le résultat de la division :

$val8 $val6 =

Calcul mental division 4


Donnez le résultat de la division :

$val8 $val6 =

Calcul mental division 5


Donnez le résultat de la division :

$val8 $val6 =

vocabulaire 1

Nous avons la division Euclidienne suivante :
$(val15[4-$m_a]) $val6 $val7
$val14$(val19[1])$(val19[2]) $(val19[3]) $(val19[4])
$(val19[5])$(val19[6])$(val19[7])
$val14$(val19[8])$(val19[9])$(val19[10])
$(val19[11])$(val19[12])

$val26

vocabulaire 2

Nous avons la division Euclidienne suivante :
$(val15[4-$m_a]) $val6 $val7
$val14$(val19[1])$(val19[2]) $(val19[3]) $(val19[4])
$(val19[5])$(val19[6])$(val19[7])
$val14$(val19[8])$(val19[9])$(val19[10])
$(val19[11])$(val19[12])

$val26

vocabulaire 3

Nous avons la division Euclidienne suivante :
$(val15[4-$m_a]) $val6 $val7
$val14$(val19[1])$(val19[2]) $(val19[3]) $(val19[4])
$(val19[5])$(val19[6])$(val19[7])
$val14$(val19[8])$(val19[9])$(val19[10])
$(val19[11])$(val19[12])

$val26 $val27 $val28 $val29

vocabulaire 4

Nous avons la division Euclidienne suivante :
$(val15[4-$m_a]) $val6 $val7
$val14$(val19[1])$(val19[2]) $(val19[3]) $(val19[4])
$(val19[5])$(val19[6])$(val19[7])
$val14$(val19[8])$(val19[9])$(val19[10])
$(val19[11])$(val19[12])

$val26 $val27 $val28 $val29

vocabulaire 5

Nous avons la division Euclidienne suivante :
$(val15[4-$m_a]) $val6 $val7
$val14$(val19[1])$(val19[2]) $(val19[3]) $(val19[4])
$(val19[5])$(val19[6])$(val19[7])
$val14$(val19[8])$(val19[9])$(val19[10])
$(val19[11])$(val19[12])

$val26 $val27 $val28 $val29

vocabulaire b 1

Nous avons la division Euclidienne suivante :
$(val14[4-$m_a]) $val6 $val7
$val13$(val18[1])$(val18[2]) $(val18[3]) $(val18[4])
$(val18[5])$(val18[6])$(val18[7])
$val13$(val18[8])$(val18[9])$(val18[10])
$(val18[11])$(val18[12])

Le nombre est $val24 nombre , car la division euclidienne donne un reste nul.

vocabulaire b 2

Nous avons la division Euclidienne suivante :
$(val14[4-$m_a]) $val6 $val7
$val13$(val18[1])$(val18[2]) $(val18[3]) $(val18[4])
$(val18[5])$(val18[6])$(val18[7])
$val13$(val18[8])$(val18[9])$(val18[10])
$(val18[11])$(val18[12])

Le nombre est $val24 nombre , car la division euclidienne donne un reste nul.

vocabulaire b 3

Nous avons la division Euclidienne suivante :
$(val14[4-$m_a]) $val6 $val7
$val13$(val18[1])$(val18[2]) $(val18[3]) $(val18[4])
$(val18[5])$(val18[6])$(val18[7])
$val13$(val18[8])$(val18[9])$(val18[10])
$(val18[11])$(val18[12])

Le nombre est $val24 nombre , car la division euclidienne donne un reste nul.